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Abstract 

A probability method for phasing macromolecular 
isomorphous replacement data from the viewpoint of 
errors arising in the isomorphous replacement process 
is considered. The assumption of imperfect isomor- 
phism between the atomic positions in the native crystal 
and the atomic positions in the native component of the 
derivative crystal leads to estimates of phase depen- 
dent on the value of sin 0/~. The mathematical tech- 
niques used are similar to those employed in deriving 
probability distributions of structure seminvariants. 
Some of the formulas, which apply only to the case of 
one derivative, are compared with earlier results. 

I. Introduction 

In deriving the classical probability methods for macro- 
molecular phase determination (Blow & Crick, 1959; 
Rossmann & Blow, 1961; Hendrickson & Lattman, 
1970), based on the central limit theorem, it has been 
assumed that the combined errors from different 
sources have a Gaussian behavior. Other models 
describing the nature of possible errors are, however, 
at least as plausible, a priori, as this. Employing tech- 
niques similar to those used in deriving probability 
formulas of structure seminvariants (Karle & 
Hauptman, 1958), it is possible to identify the main 
sources of error in the isomorphous replacement 
method and to predict the consequences of the assumed 
models. Presumably, the more rigorous account of the 
effects of these errors, as described here, will yield 
more accurate phase estimates via the isomorphous- 
replacement technique. 

This paper is concerned with errors arising from 
single isomorphous replacement, SIR., only, and with 
the probability distributions associated with SIR 
random variables. It examines some of the different 
types of errors prevalent in this method and shows how 
these errors manifest themselves in both joint and 
conditional probability distributions of the native 
structure factor or phase. 
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It is assumed that the native crystal and the native 
component of the single-isomorphous-derivative 
crystal contain N atoms, not necessarily identical, in 
the unit-cell. The heavy-atom component of the 
derivative crystal contains M dissimilar atoms, which 
may be viewed as one or more different kinds of atoms 
occupying several partial sites and having in general M 
different thermal parameters. Structure factors obey 
either the acentric distribution (when complex) or the 
centric distribution (when real or pure imaginary). 

Denote by Dh, Fu, Ha the respective derivative, 
native, and heavy-atom structure factors defined by 

N 
Dh = [Dhl exp(igth)= Y fj(h)exp(2zah.rj) 

J= 1 

M 

+ Z gk(h)exp(2~rih.r~,(1.1) 
k=l 

N 
F h =  IFhl exp(i~Ph) = Z fj(h) exp(2zrih.rj), (1 .2)  

j=  1 

M 
H a =  IHhl exp(itOh)= Z gk(h)exp(2zdh.r'g), (1.3) 

k=l 

where IDhl, IFhl, IHhl, ~h, ~Ph, fob are the magnitudes 
and phases for each reciprocal-lattice vector h. The 
atomic scattering factor and position vector of the atom 
labeled j in the native or native component of the 
derivative crystal are denoted by fj(h) and rj respec- 
tively; and by gk(h), r~, in the heavy-atom and derivative 
structure factors. The corresponding definitions for the 
structure factors in P1 are obvious. In view of (1.1)- 
(1.3) it is further assumed that the three structure 
factors Oh, Fh, nh  are on an absolute scale. 

Since (1.1)-(1.3) are applicable to a perfect SIR 
experiment, an unlikely situation, a more realistic set of 
structure factor equations is needed before random 
variables can be attached to these quantities, as 
shown next. 
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2. Errors in the SIR experiment 

2.1 Imperfect isomorphism between the native structure 
and the native component of  the derivative 

In this subsection, it is assumed that the native and 
calculated heavy-atom structure factors are defined by 
(1.2) and (1.3). A less than perfect isomorphism 
between the atomic positions in the native and the 
native part of the derivative crystal is expressed as a 
shift 8./of each position vector, rj, in the native com- 
ponent of the derivative, i.e. 

r./(derivative) = r./(native) + 5./. (2.1) 

Since the a priori value of each 5./ is unknown, it is 
plausible to suppose that 8./is a random vector which 
follows a normal distribution; more precisely, that 8./is 
normally distributed with mean vector O and isotropic 
variance o2j, i.e. 

8.i ~_ N (0,02./). (2.2) 

This assumption corresponds to the displacement of 
one or more atoms in the native crystal due to the 
infusion of the heavy-atom component. In a SIR experi- 
ment containing errors due only to this type of im- 
perfect isomorphism, the set of structure factors, 
Dh, Fh, Hh, for the non-centrosymmetric case are 
defined by 

N 

IDhl exp(iq.th) = Z ~(h) exp[2zu'h. (rj + 8j)] 
j=l  

M 

+ Z gk(h)exp(27r/h.r~,), (2.3) 
k= 1 

N 

IFhl exp(i(Ph) = Y fj(h) exp(2z~ih.rj), (2.4) 
j = l  

M 

IHhl exp(io2h) = ~ gk(h) exp(2zcih.r~,). (2.5) 
k = l  

2.2 Imperfect isomorphism plus errors in the calculated 
heavy-atom component positions 

The assumption in the preceding subsection that the 
positions of the heavy atoms in the derivative crystal 
are known is here replaced by the weaker assumption 
that an estimate for each heavy-atom position and a 
corresponding variance a2k, are known. Thus, as 
before, M random vectors 8 k are introduced and 
defined by 

~k = r~, (derivative) -- r~, (estimated), (2.6) 

where 

E k ~_ N (O,o2k). (2.7) 

The structure factor equations describing this SIR 
model are now 

N 

IDh I exp(igth) = ~ fj(h) exp[2~zih.(rj + 8 j ) ]  

j = l  

M 

+ ~ gk(h)exp(2nih.r~,), (2.8) 
k = l  

N 

IFhl exp(itPh)= ~ fj(h)exp(2ztih.rj), (2.9) 
j = l  

M 

IHhl exp(i09h) = ~ gk(h) exp 2~zih. (r~, + 8f,). (2.10) 
k= 1 

The term ek in (2.10) corresponds to the discrepancy 
between the true position, r~,, of the atom labeled k in 
the derivative crystal and its estimated position, r~, + e~ 
in the calculated heavy-atom crystal. 

2.3 Errors arising from non-isomorphous sources 

The two sources of error considered thus far are 
probably the major ones associated with imperfect 
isomorphism. This does not imply they are the only 
major errors in the SIR process. The most important 
source of error unrelated to isomorphous replacement 
is experimental inaccuracy in the estimation of the 
magnitudes tDhl and IFh I. The effects of experimental 
errors can be incorporated into the non-centrosymmetric 
structure factor model by adding the complex error 
functions, Xo, XF, where 

%D = IXDI exp(i~n), (2.11) 

ZF= IZFI exp (i~r), (2.12) 

to (2.8), (2.9) respectively. Note that each has magni- 
tude and phase components. It is assumed that each 
pair (12'o1,~) has the joint probability distribution 
defined by 

= exp -- - , P(~x~l,~) ~u~ u~ / 

i.e. that all values of ~,~ are equally probable, where a is 
either D or F. The quantity/z~ in (2.13) is the variance 
in those errors unrelated to isomorphous replacement. 
Hence, the complete non-centrosymmetrlc structure 
factor model for single isomorphous replacement is 
given by the three structure factors Dh, Fh, H h defined 
by 

N 

IDhl exp(igth) = ~ fj(h) exp[2ztih. (rj + 8j)] 
j = l  

M 

+ ~ gk(h) exp (2~zih. r~,) 
k = l  

+ IZDI exp(i~D), (2.14) 
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N 

IFal exp(itPh)= Z fj(h)exp(2z~ih.rj) 
j = l  

+ Ixrl exp(i~F), (2.15) 

M 

Inhl exp(io)h = ~ gk(h) exp[2:rtih. (r~ + I~k)], (2.16) 
k =  t 

where 8j, E k are specified by (2.2), (2.7) respectively. 
For structure factors obeying the centric distribution, 
the error variables Xb, X~- are real and normally dis- 
tributed with variance E 2, i.e. 

z ' ~ N ( O , E 2 ) ,  (2.17) 

where a is either D or F. Hence, for the centro- 
symmetric zones 

N / 2  

D h = 2 Z fy(h) cos[2zth. (rj + 5)1 
J=  t 

M / 2  

+ 2 ~ gk(h) cos(27th.r~) + X~, (2.18) 
k = l  

N I 2  

Fh = 2 ~ fj(h) cos(27th.ry) + X~, (2.19) 
J = l  

M / 2  

H a =  2 ~ gk(h) cos[27zh. (r ~ + I~k) ]. (2.20) 
k= I 

the other hand, the error term is complex and all values 
of the phase Co are equally probable. 

Equations (2.14)-(2.16), and (2.18)-(2.20) form the 
basis from which is derived the conditional probability 
distribution of the phase ~0h, given the three magnitudes 
IDhl, IFhl, IHhl and phase (J-)h, and the joint conditional 
probability distribution of the pair (IFhl,~0h), given the 
magnitudes IDhl, Inhl and phase COb, as shown in the 
sequel. 

3. The conditional probability distribution o f  the native 

phase (Oh given the three magnitudes I D h I, I F h {, I H h I, 
and phase mh 

Assume the values of the three magnitudes IDhl, IFh I, 
I Hal and phase Wa are known, and the value of the 
singe phase q~h is unknown. Denote by 

Pal3, t = P(~ID, F,H,m) (3.1) 

the conditional probability distribution of (Ph, given the 
three magnitudes IDhl, IFhl, IHh I and phase toa. Then, 
in view of the joint probability distribution, P, of the 
three complex structure factors, D, F, H, Appendix I, 
(I.2), 

Ptl3, t = f P d P d W d ~  (3.2) 
o 

2.4 A structure factor model analogous to the formu- 
lation by Blow & Cr&k 

If, in the SIR experiment, errors from all sources are 
combined and described by the single complex random 
variable XD then, 

N 

IDh[ exp(i~h) = Z fj(h) exp(2z~ih.rj) 
j =  t 

M 

+ ~ gk(h) exp (2ztih. r~) 
k= t 

+ IXDI exp(i~n), (2.21) 

where, 

= 1/K exp 

x lo { 2-~---~ [s2~ FE F2 + (SE + gF)Eye H 2 

+ 2SI(S 2 + ,UF)Y FFH cos (~  -- m)]v2}, (3.3) 

S =  [ (S  2 + S 1 + ~/D)(S2 + ~IF)  S I - -  S I  ]-'2 - -  (S 2 + ~UF)Y2],  

(3.4) 

M 

st = Z g2(h), (3.5) 
k = l  

N N 

IFh I exp(i~0h) = Y fj(h)exp(2zah.r) ,  (2.22) S2= Z fie(h), (3.6) 
j = l  j = l  

M 

IHal exp(io)a) = ~ gk(h) exp(2nih.r~). (2.23) 
k = l  

This set of structure factors defines the 'ensemble error' 
model. The primary difference between it and that of 
Blow & Crick is that, in the latter system, all errors, 
presumed Gaussian, are assumed to reside in only the 
magnitude of the derivative structure factor alone, 
even in P1; hence the error is always real. In (2.21) on 

M 

Y = E g~,(h) exp( -8zt2 O~k sine 0/22), (3.7) 
k= 1 

N 
F =  ~ fj2(h) exp(--8zt 2 02j sin 2 0/~2), (3.8) 

j = l  

g v =  e(X2), (3.9) 

gD = e (Z2), (3.10) 
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and where e denotes the expected value; K is the 
normalization factor, and I 0 is the zero-order modified 
Bessel-function. For the centrosymmetric zones, the 
appropriate conditional probability distribution 

P+lta. ~ (P~3. ~) = the conditional probability that 

q~ = 0(z0, given D, F, H, o9, (3.11) 

is obtained from equation (1.3) by similar methods, 

l { + Y FFH cos og } 
P+ -- - -  exp -- it3.1 - -  K X 

/ ° x cosh -~- [s~I~F 2 + (s 2 + E~)2y2H 2 

+ 2Sl(S2 + E~) YFFH cos co] 1/2 I '  (3.12) 
X 

/ 

and the known phase co is 0 or ~. The parameter • is 
defined by 

2 =  [(s 2 + s I + E2)(s2 + EZF)S,- Sl 1 ~ -  (s 2 + E2F)Y2], 

(3.13) 

the parameters s~, s 2, Y, F are defined by (3.5)-(3.8) 
respectively, and 

E 2 = e ( X ~  2) (3.14) 

E 2 = e (Z~-2). (3.15) 

It is informative to consider two special cases for the 
distribution given in (3.3). 

3.1 Imperfect isomorphism only 

Assume the value of tr2k is zero, i.e. the heavy-atom 
positions are known with perfect accuracy, then (3.5) 
and (3.7) imply 

F =  s r (3.16) 

Assume also that the values o fg  F and go [(3.9), (3. I0)] 
are zero, i.e. that the magnitudes IFhl and IDh I are 
known with perfect accuracy. Then (3.3) becomes 

1 {--2FFHcos(q~--o9)} 
PI,3,1 = -~" exp (s 2 _ / -2)  

x I 0 (s22_/ '2) [F2F 2 + s2H 2 + 2s2FFH 

× COS (qb -- ~)]1/2 l '  (3.17) 
/ 

where K is the normalization factor. This distribution 
belongs to the model in which errors arise from imper- 
fect isomorphism alone ({} 2.1). The explicit definition of 
F, (3.8), clearly shows the sin 0/2 dependence in the 
reliability of the phase estimated from P1,3,1. As the 
value of sin 0/2 increases, the value of F decreases 
faster than s 2, which in turn yields increasingly larger 
values for 

s 2 --/-2. (3.18) 

In short the variance of (3.17) increases with increasing 
sin 0/2 so that the distribution Pl~3,1 yields less reliable 
estimates of phase for larger values of sin 0/2. 

3.2 Ensemble error model 

For this special case, the values for O~k and a 2oj are 
assumed to be zero which, in view of (3.6) and (3.8), 
implies 

F = s 2, (3.1 9) 

as well as (3.16). Assume also that the value of gr  is 
zero. Then (3.3) becomes 

1 
P113,1 : F exp gD 

x I 0 [F 2 + H 2 + 2FH 
go 

x cos (O -- o9)]1/2 / , (3.20) 

where K '  is the normalization factor. The distribution 
belongs to the ensemble error model of {}2.4. From the 
definition of gD, (2.13), it is clear that any estimate of 
0h from (3.20) is independent of the value of s in0/L 
Thus, in this case, (3.20) implies that there is no 
relationship between the value of sin 0/2 and the 
reliability of the estimate ~0h. Depending on the values 
of the parameters involved, estimates of phase could be 
more reliable at high values of sin 0/2 than at lower 
ones. Also, (3.20) shows that the reliability of the 
estimate of 0h decreases with increasing go. 

3.3 The conditional expected value of exp(i~Oh) given 
IDhl, IFhl, IHhl, o9h 

Denote by e [exp(iO)ID,F,H, o9] the conditional 
expected value of exp (i~0h), given the three magnitudes 
LDhh, IFhl, IHhl and phase o9h. Then, 

2 n  

e[exp(i~)lD,F,H, o9] = f exp ( i~ )  PI,3,1 d~ ,  (3.21) 
0 

= X exp (/co), (3.22) 

where X is the figure of merit and o9 the best phase. 
Although the integral is best evaluated by numerical 
methods, it has an analytical representation given by 
(3.22) where 

oo 

Z (-1)mlm(A)Im(B)Im-l(C) 
m = - - o o  

X = - , (3.23) 
oo 

~ (--1)'nlm(A)Im(B)Im(C) 
m = - - o o  

A =  2s~ FDF 
- - ,  (3.24) 

27 
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B = 2(s2 + PF)YDH (3.25) 
27 

2FYFH 
C = ~ (3.26) 

27 

The modified Bessel functions are of order m. The 
parameters 2;, st, s2, Y, F,/~v defined by (3.4)-(3.9) are 
assumed known. The expected value of exp (itpt0 corres- 
ponding to the two special cases of imperfect iso- 
morphism and ensemble error follow from the substi- 
tutions discussed in § 3.1 and § 3.2 respectively. 

4. The conditional probability distribution of the native 
structure factor Fh given the two magnitudes I Dh I, I Hh I 

and phase 0Jh 

It has been shown by Blow & Crick (1959) that the 
minimum mean square error in a computed electron 
density synthesis is achieved when the Fourier 
coefficients Fh are defined by 

Fh = f FhP(Fu)dFh, (4.1) 
c 

where P(Fh) is the probability distribution of the struc- 
ture factor Fh. In order to obtain this centroid or 
expected value of Fh, one must first obtain P(Fh) itself. 
Hence, in the case of single isomorphous replacement, 
the joint conditional probability distribution of the pair 
of random variables (F,~),  given the two magnitudes 
IDhl , IHhl and phase Ogh is needed. If we denote by 

Pl, l,2,1 = P(F,~ID, H, og) (4.2) 

the joint conditional probability distribution of the 
magnitude I Fhl and phase tPh of the native structure 
factor Fh, given the two magnitudes IDhl, IHhl and 
phase COh, then, in view of the joint probability density 
function of the three complex structure factors, P, (I.2), 
P l ,  ll2,1 is obtained by fixing the variables D, H, 09, 
integrating over the ~, variable from 0 to 2zt, and 
renormalizing. Hence, 

GF 
Pl,II2,1 ~ZIo(2YDH/G) 

x exp{-- ~ G  [s2F2D2 + F2y2H2 + G2F2]} 

{ -2YFFH cos (~-  og) } 
x exp Z 

i 12D x 0[---~ [sI2F2F 2 + (s2 + UF)2y2H 2 

+ 2S l (S2 + / u ~ : ) F Y F H  

x cos (q~ -- o~)1 v2 ~, (4.3) 
/ 

where 

G = [(S 2 + S 1 + flD)Sl --~P 2]. (4.4) 

The parameters Z, s l, s 2, Y, F, Pv, l-to are defined by 
(3.4)-(3.10), and are presumed known. The probability 
distributions associated with the imperfect isomorphism 
and ensemble error special cases follow from the 
substitutions discussed in § 3.1 and § 3.2 respectively 
and will not be considered further. 

4.1 The expected value of lFhl exp(#ph) 
In view of the joint conditional probability 

distribution, (4.3), of the pair of random variables 
(F, ~), given the two magnitudes I Dhl, I Hh I, and phase 
oJ h, the expected value of IFh t exp(i~ph) is easily 
obtained. Denote by 

e=e [Fexp(i~)lD, H, o~] (4.5) 

the conditional expected value of LFh I exp(itp~, given 
the magnitudes IDhl, IHhl and phase Wh. Then, 

oo 27t 
e= f f F e x p ( i ~ )  PI,I 2,1 d F d ~ .  (4.6) 

0 0 

The integration is readily performed leading to 

F[II(2FDH/G) ] 
C= - - ' ~ [ ~  Sl D -- Y'H exp(iw), 

where G is defined by (4.4). 

(4.7) 

4.2 Imperfect isomorphism only 
Employing the assumptions of § 3.1, the expected 

value of F exp ( i~)  for the special case of imperfect 
isomorphism, e" t, follows directly and is given by 

r [I,(2Dn/sgD ] 
e~=--s2 [Io(2DH/s2 ) - H]  exp(iw). (4.8) 

4.3 Ensemble error model 
In view of § 3.2, the expected value of F exp ( i~)  for 

the special case of the ensemble error model e e, is 
given by 

s2 { ll[2DH/(s2 + a°)l } 
eE -- (S2 +/-tD) Io[2DH/(s2 +/tD)] D -- H exp (i09). 

(4.9) 

It is apparent that errors associated with the two 
models manifest themselves in different ways; in 
particular, the Bessel functions of (4.8) are independent 
of the error source, F. Conversely, the values of the 
Bessel functions in (4.9) directly depend on the value of 



356 A MODEL FOR DESCRIBING ERRORS IN ISOMORPHOUS REPLACEMENT DATA 

:to, the source of errors for this model. If both models 
were free of errors then F = s 2,/to = 0 and 

el= % = - [ II(2DH/s2) D -  HI  exp(iog), (4.10) 

-i 

LIo(2DH/s2) 

which is the weight function for a Sim-weighted 
difference Fourier synthesis (Sim, 1960; Nixon & 
North, 1976). 

The various probability distributions and expec- 
tations assume as known, or at least well estimated, 
several parameters, /tv, /to (3.9), (3.10) for the non- 
centrosymmetric functions, E~, D~2., (3.14), (3.15), for 
the centrosymmetric ones, and s t, s 2, Y, F, (3.5)-(3.8), 
for both. Procedures for obtaining estimates for these 
parameters are considered next. 

5. Estimates of unknown parameters 

Excluding the three magnitudes LDhl, IFhl, IHhl and 
phase O)h, there are two classes of parameters associated 
with the probability density functions given in (3.3), 
(3.12), (4.3); those which are independent of, and those 
which are dependent on, the value of sin 0/2. 

The parameters independent of sin 0/2 are /tF, /to, 
E 2, E 2. They arise from experimental errors associated 
with the native and derivative magnitudes in the non- 
centrosymmetric and centrosymmetric cases. Con- 
sequently, a priori estimates for these variances may 
be made (Blow & Crick, 1959) based upon multiple 
estimates of equivalent reflections from different 
crystals or symmetry-related reflections in the same 
crystal. 

The second class of parameters, dependent upon the 
value of sin 0/2, consist of Sl, s2, 7 ,  /". Estimates of 
the values of a2K are obtainable from a refinement of 
the heavy-atom parameters. These estimates may then 
be used to compute the values of s l, (3.5), and Y', (3.7), 
for each reflection. If the contents of the unit cell of the 
native crystal are known, then s 2 may be directly 
evaluated for each reflection from its definition, (3.6). 
When the contents of the unit-cell are imprecisely 
known, then s 2 may be estimated in shells of h = sin 0/2, 
by 

S2-'(IFh[2)h . (5.1) 

second by the method of maximum likelihood (Kendall 
& Stuart, 1973). In view of (I.3) it is easily shown that 

e t ( D -  F -  H)2I = 2(s 2 - F) + 2 ( s , -  Y) + E2o + E~. 

(5.2) 

From assumed values of s 2, s~, Y, E 2, E2., estimates of 
F may be obtained by substituting the expected value, 
~, for local averages in shells of sin 0/2, i.e. 

c t ( D -  F -  H) 21 - ~ ( ( D -  F - -  H)2)h, (5.3) 

and solving for F. The individual terms contributing to 
the average in (5.3) may be computed by minimizing 
the discrepancy of each (D - F - H) term from the 
average. A potential disadvantage with this estimate of 
F is that it is not a minimum variance one. For this 
reason, estimation by the method of maximum likeli- 
hood may be preferred, and is obtained from the 
solution of the cubic equation 

"~- SI(S2 "~- E 2 )  f - -  (s 2 -I- E2F) 
h 

where 

K(s2 + E2) ( F ( D - Y  1 s~ h = O, (5.4) 

K = [(s 2 + s 1 + E~)s I - -Y 2], (5.5) 

and where the signed values of Dh, Fh, nh in (5.4) are 
obtained by minimizing the residual of (5.3). If more 
than one real root should happen to exist, that root 
which maximizes the likelihood equation (II.1) is 
selected. Also, since E2F, E 2 are the variances of the 
magnitudes from the centrosymmetric zones, the 
variances /tF, /to, for the magnitudes from the non- 
centrosymmetric zones may be used by substituting 

:to = 2E2 (5.6) 

and 

u~= 2E~ (5.7) 

into (5.4). This resfilt follows from the probability 
density defined by (2.13), (2.17). 

The only parameter that remains to be considered is F. 
Estimation techniques for this parameter depend on the 
existence of centrosymmetric zones. These estimates 
may then be used in the initial phasing. A procedure 
for obtaining the value of F from non-centrosymmetric 
data is more complicated and beyond the scope of this 
paper. 

Two procedures are considered for estimating the 
value of F; the first is by the method of moments, the 

6. A comparison with other SIR formulations 

Clearly, the major distinction between other error 
models and the ones considered here is the notion of the 
imperfect-isomorphism model considered in § 2.1. In 
order to make a simple comparison between the latter 
and other statistical-error models, some numerical 
examples are presented. In particular, some graphs are 
given of conditional probability distributions of (Ph, 



EDWARD A. GREEN 357 

given representative values of the three magnitudes 
IDhl, IFhl, IHhl and heavy-atom phase OJh. The effects 
of the error model on these probability distributions are 
illustrated in the light of two assumptions: there is 
perfect agreement between the true and calculated 
heavy-atom structure factors, and there are no experi- 
mental errors associated with the derivative and native 
structure-factor magnitudes. Under these conditions, 
the following probability distributions are compared: 
(3.17) (in the accompanying figures denoted by H) 
corresponding to the imperfect-isomorphism model; 
(3.21) (denoted by EE) associated with the ensemble 
error model; Blow & Crick (1959), equation (23), 
denoted by BC; and Einstein (1977), equation (8), 
denoted by RE. 

Error estimates for the Blow-Crick and Einstein 
formulas are obtained from 

E 2 = < ( I D  h -- F h  I - -  IHhl)2>h,  (6.1) 

and the estimate of errors from the ensemble error 
model is found from 

:t o = 2E 2. (6.2) 

For the imperfect-isomorphism model, 

< ( I D h  - -  F h  I i IHhl)2>h = 2(s2 - / 3 .  (6.3) 

Hence for this model, once s 2 is specified, F is deter- 
mined. The figures acccompanying this section are plots 
of the four normalized probability distributions versus 
qb in the interval 0 ° _< • _< 360 °. In Figs. l(a) and 
1 (b) the value of s 2 is arbitrarily (200) 2, the value of F 2 
in Fig. 1 (a). Hence, in view of the value of E 2 listed in 
the figures, the value of F is 38 750, which differs only 
slightly from the maximum-likelihood estimate of 
38 745. In Fig. 1 (e), the value of s 2 is (400) 2, or four 
times the value of F 2 in Fig. 1 (a), and in Fig. 1 (d), s 2 is 
one fourth the value of F 2. Table 1 lists the mean 

Table 1. Mean figure of  merit 
Distribution 

H EE BC RE 

Fig. l(a) 0.31 0.15 0.21 0.15 
Fig. l(b) 0.43 0.25 0.35 0.29 
Fig. l(e) 0.25 0.15 0.21 0.15 
Fig. l(d) 0.51 0.15 0.21 0.15 
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Fig. 1. The conditional probability distributions II, EE, BC, RE of the native phase q~h given the three magnitudes IDhl , IFhl , IHhl and 
phase (oh for the values listed; see § 6. 
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figures of merit for each distribution in the four figures. 
The plot of the H distribution in Fig. l(d) is quite 

different, not only in comparison with the other three 
distributions in this figure, but also with the H dis- 
tributions in both Figs. 1 (a) and l(c). In particular, the 
modes of the distribution are at 120 o and 240 °, com- 
pared with 100 ° and 260 ° for the others. The effect of 
changing s2 in the H distribution, (3.17), is to alter the 
normalization of the three magnitudes IDhl , IFhl , IHhl 
which is not possible in the other three distributions. By 
defining the three normalized structure-factor magni- 
tudes 

IDhl = IDhl/S 1/2, (6.4) 

IFhl = IFhl/s~/2, (6.5) 

IH~I = IHhl/S 1/2, (6.6) 

and by defining 

p = 1"Is 2, (6.7) 

(3.17) may be expressed in terms of the normalized 
variables F ' ,  D', H '  and p. Thus, 

1 { - - 2 p F ' H ' c o s ( ~ - - o ~ ) }  
P113,1 = -~- exp (1 - -  p2 )  

( 2D'  [ H  ' 2  + p2F'2 + 2 p F ' H '  
x I° ~[ (1 -- p2) 

x cos (~  - o9)1~/2 / . (6.8) 
/ 

Although not presented here, the probability distri- 
bution associated with equation (4), Rossmann & Blow, 
and equations (6), (17), Hendrickson & Lattman have 
been compared. The results from these two formulas 
are not particularly different from the EE,  BC, and 
R E  distributions. 

7. Concluding remarks 

The assumption of imperfect isomorphism between the 
atomic positions in the native crystal and the atomic 
positions in the native component of the derivative 
crystal leads to estimates of phase whose reliability is 
directly affected by the value of sin 8/2. Furthermore, 
the direct incorporation of this type of error into the 
phase determining formalism yields distributions having 
a smaller variance with potentially different estimates of 
phase than that derived from distributions based on the 
assumption of Gaussian errors alone. 
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tinued encouragement and support of this work, and for 
his reading and critique of this paper. This research was 
supported by Grant No. CHE76-17582 from the 
National Science Foundation. 

APPENDIX I 
The joint probability distribution of the three structure 

factors Dh, Fh, Hh 

It is assumed that a crystal containing N, not neces- 
sarily identical, atoms per unit cell in the space group 
P 1 is given. The observed structure factor, Fh, for this 
crystal is defined by (2.9). Another crystal containing 
the same N atoms, in positions approximately identical 
to those of the first crystal, as well as additional (heavy) 
atoms per unit cell, not necessarily identical, in P1 is 
also given. The observed structure factor, Dh, for the 
latter crystal is defined by (2.8). Estimates of the 
atomic parameters of the M additional atoms may not 
correspond precisely to the parameters specifying the 
atoms within the second crystal. A calculated structure 
factor Hh, relative to the true heavy-atom-component 
structure factor in (2.8), is defined by (2.10). The 
reciprocal-lattice vector h is fixed. The N and M 
atomic position vectors r s and r~,, respectively, are 
assumed to be uniformly and independently distributed 
in the unit cell. The N (M) random-shift vectors lij (Sk) 
are normally distributed, with density functions given 
by (2.2), (2.7). The two ensemble random variables 
Zo, ~r, having components ( I Z D I , ~ D )  and (IXFL,~r), 
have joint probability densities given by (2.13). Then 
the three structure factors Dh, Fh, Ha, as functions of 
these enumerated primitive random variables, are 
themselves random variables. Denoting by 

P = P(D,F ,H,  ~,, ¢,,,o) (1.1) 

the joint probability density function associated with 
the three magnitudes IDhl, IFhl, IHhl and phases 
~h, (Oh, C0h, then, complete to terms of first order, 

P = exp {--sl(s 2 + #r )D  2 zr 3 ,~, 

-- [(s 2 + s 1 + t.to)s 1 - - y2]F2  

- [ (s~  + s, + ao)(s~ + a ~ ) -  1"211-12 

+ 2 s ~ F D F c o s ( W - -  ~)  

+ 2(s2 + #r) Y D H  cos ( W-- co) 

cos (~  -- co)}). (I.2) ~ 2 ~ f l q l - ~ F H  

I 

The parameters Z', sl, s2, Y, F, #r, //D are respectively 
defined by (3.4)-(3.10). The analogous joint probability 
density function of the three centrosymmetric structure 
factors, defined by (2.12)-(2.14), is 

P = P ( D , F , H )  (1 
= ( 2 r 0 - 3 / 2  2 - ~ / 2  exp - - ~  {s~(s2 + E~) D 2 

+ [(s2 + sl + E ~ ) s l -  y2]F2 

+ [(s 2 + s~ + E~)(s 2 + E~) -- P ]  H 2 -- 2S lFDF 

-- 2(s 2 + E 2) F D H  + 2 Y F F H }  ~. 
(1.3) / 
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The parameters 2, sl, s2, Y, F, E 2, E~ are defined by 
(3.13), (3.5), (3.6), (3.7), (3.8), (3.14), (3.15). The 
mathematical techniques employed in deriving (I.2) and 
(I.3) are similar to those discussed by Hauptman 
(1975a,b). The reader is referred to these papers for a 
discussion of similar mathematical analyses. 

A P P E N D I X  II 
The maximum-likelihood estimate o f F  

This equation assumes estimates for the parameters 
s l, s 2, Y, E 2, E 2, and estimates for the three structure 
factors Dh, Fh, Hh. The differentiation of L is straight- 
forward and leads to the cubic equation in F 

+ F  y 2 K F  2 - _~ 
- - - -  .31- 

S 1 S I ( S  2 + E2F)/ 

In view of equation (18.1), Kendall & Stuart, page 37, 
the likelihood function, L, of (I.3) based on n inde- 
pendent observations of the three centrosymmetric 
structure factors Dh, Fh, Hh is 

--Sl(S -/- E2F) 
L = (2;z) -3n/2 2 -n/2 exp 

2X 

[(s2 + Sl + E~)Sl _.y2]  

22 J=l  n ± 
x Z F}--  [(s2 + sl + E2)(s22~ + E2) -- i-2] H} 

J=l  j = l  
n n 

s l rs~  (s~ + E~lr" 
+--ff- ... DjFj + 27-" Z D'II-Ij 

j = l  j= ]  
YF " 

. Z F j H j } ,  (II. 1) 
j = l  

where 

2 =  {(s 2 + E2)[(s2 + s I + E 2 ) s l - y E ] - S l F 2 1 .  (II.2) 

The maximum-likelihood estimate of F is obtained 
from the solution of 

dL 
- 0. (II.3) 

dF 

+ D - - - -  -- 0, 
S] S] 

where 

K =  [(s 2 + s I + E2)sl _y2 ] .  (11.5) 

The averages are taken over the n independent obser- 
vations per shell of sin 0/2. 

(II.4)" 
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